Mark scheme - Carbon-Carbon Bond Formation

Questi on		ti	Answer/Indicative content	Mark s	Guidance
1		i	Mechanism 5 mecha	5 (AO1. 2) (AO2. 5) (AO2. 5) (AO2. 5) (AO1. 1)	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must come from lone pair on C of \neg CN OR CN \neg OR from minus sign on C of \neg CN ion (then lone pair on CN \neg does not need to be shown) Curly arrow from C=O bond must start from, OR be traced back to, any part of C=O bond and go to O (from C=O bond and go to O) $(from C=O bond and go to O)$ $(from C=O bond and$
		ï	Heterolytic One (bonded) atom/O receives both/2 electrons √ Fission Breaking of a covalent bond √	2 (AO1. 2)	ALLOW 2 electrons go to one (bonded) atom/O DO NOT ALLOW both pairs of electrons go to O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element or molecule ALLOW π bond in C=O breaks

٦

			IGNORE breaking of C=O bond (no reference to only one bond breaking) 'Bond breaking' is not sufficient <i>(no reference to covalent)</i> Examiner's Comments Candidates often referred to NaCN and HCN in their responses. Candidates who identified the correct bond breaking often then incorrectly wrote that the oxygen atom gained the lone pair of electrons.
	Total	7	
2	Marks for each correct structure/reagent shown below $\begin{array}{c} & & \\$	5	ANNOTATE WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For reaction with excess H ₂ /Ni IGNORE hydrogenation of benzene ring i.e. the following structure scores two marks UPUT (CH ₂ NH ₂) ALLOW KCN/H ⁺ ALLOW HCN ALLOW HCN ALLOW H ₂ SO ₄ or HNO ₃ or HC/ for H ⁺ Examiner's Comments This question proved difficult and although the majority of candidates scored in some parts, only the very best responses secured all five marks. More detailed feedback is discussed with Exemplar 8.

				that the CN group would also react but instead of writing CH ₂ NH ₂ they replaced the CN group with just NH ₂ , effectivity removing a carbon atom from the chain. The second reaction of the hydroxynitrile is acid hydrolysis of the CN group. This response identifies the correct carboxylic acid. However, this reaction seemed unfamiliar to many candidates and a range of incorrect responses were frequently seen. The final reaction is the reduction of cinnamaldehyde with NaBH ₄ . Many candidates recognised this reaction, but as can be seen in this response the alcohol group is shown on the incorrect carbon atom. This was a common error. Candidates are advised to number carbon atoms present if provided with a complex structure, such as cinnamaldehyde. Numbering will ensure that each carbon is considered when drawing reaction products and would minimise errors, such as those demonstrated in the reduction product.
		Total	5	
3	i	curly arrow from ⁻ CN to carbon atom of C-C/ bond \checkmark Dipole shown on C-C/ bond, C ⁵⁺ and C/ ⁵⁻ , AND curly arrow from C-C/ bond to C/ atom \checkmark $C_2H_5 \longrightarrow C_1^{\delta_+} \longrightarrow C_1^{\delta} \longrightarrow C_1^{-}$ correct organic product AND C/ \checkmark $C_2H_5 \longrightarrow C_1 \longrightarrow C_1^{-} \longrightarrow C_1^{-}$	2	ANNOTATE ANSWER WITH TICKS AND CROSSESCurly arrow must come from lone pair on C of \neg CN OR CN \neg OR from minus sign on C of \neg CN ion (then lone pair on CN \neg does not need to be shown)IGNORE NaClALLOW SN1 mechanism:Dipole shown on C–Cl bond, C $^{\delta+}$ and Cl $^{\delta-}$, AND curly arrow from C–Cl bond to C/ atom \checkmark Correct carbocation AND curly arrow from \neg CN to carbocation. Curly arrow

			e.g. HC/ AND H ₂ O H ₂ SO ₄ AND H ₂ O Examiner Comments Although many candidates were able to provide the structure of methanal as the starting material for this synthesis, the structures of chloromethanol, bromomethanol and iodomethanol were accepted as suitable alternatives. It should be noted that hydrolysis is carried out using aqueous acid and that dilute acid is not a suitable alternative.
ii	Explanation Nitrogen electron pair OR nitrogen lone pair AND accepts a proton / H* \checkmark Structure of salt $H \to H$ AND $CT \checkmark$	2	IGNORE NH ₂ group donates electron pair ALLOW nitrogen donates an electron pair to H ⁺ DO NOT ALLOW nitrogen donates lone pair to acid IGNORE comments about the O in the –OH group Compound H is a base is not sufficient (role of lone pair required) DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H ⁺ required) ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW H H H i.e. charges n IF charges are shown both need to be present ALLOW charge either on N atom or NH ₃ ⁺ IF displayed then + charge must be on the nitrogen Examiner Comments Only 20% of candidates were awarded both marks for this question. The commonest error

			Angle a = 109.5°		
			Angle b = 104.5°		ALLOW 109–110°
		II i	Angle c = 120°	2	ALLOW 104–105°
			Two correct All three correct		
	b	i	It is an electron pair donor OR donates a lone pair	1	
		ï	$\begin{array}{c} \begin{array}{c} & & & \\ HO \\ & & \\ HO \\ & \\ \end{array} \\ \begin{array}{c} & \\ HO \\ \end{array} \\ \begin{array}{c} & \\ HO \\ \end{array} \\ \begin{array}{c} & \\ HO \\ \end{array} \\ \begin{array}{c} \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	4	Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O) IGNORE dipole on C–O single bond Curly arrow must come from lone pair on O OR from minus sign on O ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O)
		ii	Correct organic product: HC/	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
			Total	11	
6	а			1	

b	i	2Na + 2CH ₃ OH → 2Na ⁺ + 2CH ₃ O ⁻ + H ₂ \checkmark	1	ALLOW 2Na + 2CH₃OH → 2CH₃ONa + H₂
	ï	$G_{H_3O}^{\delta_+} \longrightarrow G_{O}^{-} + Br$ Curly arrow from CH ₃ O ⁻ to carbon atom of C-Br bond \checkmark Dipole shown on C–Br bond, C ^{δ_+} and Br ^{δ} AND curly arrow from C–Br bond to the Br atom \checkmark Products of reaction (must not be ambiguous) \checkmark	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous. The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge. ALLOW S _N 1 Dipole shown on C–Br bond, C ^{δ+} and Br ^{δ-} , and curly arrow from C– Br bond to the Br atom. Correct carbocation drawn. AND curly arrow from CH ₃ O ⁻ to carbocation. The curly arrow must start from the oxygen atom of the CH ₃ O ⁻ , and must start either from a lone pair or from the negative charge.
	ii i	CH₃O⁻ donates an electron pair AND heterolytic fission ✓	1	ASSUME 'it' refers to CH₃O⁻
с		Chemical shift, δ/ppm Relative peak area Splitting pattern0.5-1.93Triplet3.0-4.32Quartet0.5-1.96Doublet3.0-4.31Heptet	4	ALLOW δ values ± 0.2 ppm, as a range or a value within the range ALLOW multiplet for heptet
d	i	H ₃ C C C C C H ₃ H_3C C C C H ₃ H_3C C C C H ₃ H_4 C C C C C H ₃ H_4 C C C C C C C H ₃ Curly arrow from CH ₃ O ⁻ to H of CH ₂ \checkmark Curly arrow from C-H bond to C of CH ₂ \checkmark H_3C C C C C C C H ₃ H_3C C C C C C C C C C C H ₃ H_3C C C C C C C C C C C C H ₃ H_3C C C C C C C C C C C C H ₃ H_3C C C C C C C C C C H ₃ H_3C C C C C C C C C C C H ₃ H_3C C C C C C C C C H ₃ H_3C C C C C C C C C C H ₃ H_3C C C C C C C C C C C C C H ₃ H_3C C C C C C C C C C C C C C C C C H ₃ H_3C C C C C C C C C C C C C C C C C C C	3	The curly arrow must start from O atom of CH ₃ O ⁻ AND must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow comes from negative charge.

г

				ALLOW any unambiguous structure, skeletal, displayed, structural or combination.
	ii	CH₃O⁻ accepted a proton ✓	1	ASSUME 'it' refers to CH ₃ O⁻
		Total	14	
7	i	Step 1: add HCN OR H ₂ SO ₄ /KCN CH ₃ CHO + HCN \rightarrow CH ₃ CH(OH)CN Step 2: react with H ₂ /Ni CH ₃ CH(OH)CN + 2H ₂ \rightarrow CH ₃ CH(OH)CH ₂ NH ₂	4	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous first mark can be implicit from equation. third mark can be implicit from equation if Ni shown as catalyst (<i>e.g.</i> above the reaction arrow) ALLOW $CH_3CH(OH)CN + 4[H] \rightarrow$
	ii	because (compound D) forms hydrogen bonds form with water demonstrated through diagram showing: - dashed line between —OH and (:)OH ₂ - dashed line between —NH ₂ and (:)OH ₂	3	dipole and lone pair are not required IGNORE bond angles Diagram does not need to show all of Compound D (and IGNORE if wrong)
	ii	$\begin{array}{c cccccc} H & CH_3 & O & H \\ H & CH_3 & O & C & C \\ H & H & H & H \\ H & H & H & H \\ H & H &$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and / or <i>n</i>
		Total	9	